VoidArchive/ChunkManager.cpp

177 lines
No EOL
5.1 KiB
C++

#include "ChunkManager.h"
ChunkManager::ChunkManager(EncryptionManager& em)
:eman(em)
{ }
ChunkManager::~ChunkManager()
{ }
//-----------------------------------------------------------------------------
// Kompresja blokowa
//
// Dzielenie vectora na chunki dok³adnie po 128KB
// Kompresowanie chunków bez nag³ówka
//-----------------------------------------------------------------------------
std::vector<char> ChunkManager::chunked(const std::vector<char>& raw, const bool& compress, const bool& encrypt)
{
//std::vector<BlockSize> blockSizes;
// Maksymalny rozmiar chunka
const size_t maxBlockSize = BLOCK_SIZE;
const size_t rawSize = raw.size();
uint16_t blockLen = 0;
uint32_t lastChunkRawSize;
std::vector<char> compressedBlocks;
for (size_t offset = 0; offset < rawSize; offset += maxBlockSize)
{
// Rozmiar chunka
const size_t chunkSize = std::min(maxBlockSize, rawSize - offset);
auto begin = raw.begin() + offset;
auto end = begin + chunkSize;
// Skopiuj fragment danych do chunka
std::vector<char> chunk(begin, end);
std::vector<char> outChunk = encrypt ? eman.encrypt(compress_data(chunk)) : compress_data(chunk);
uint32_t chs = chunk.size();
uint32_t zch = outChunk.size();
//addIntToVector<uint32_t>(compressedBlocks, chs);
lastChunkRawSize = chs;
addIntToVector<uint32_t>(compressedBlocks, zch);
compressedBlocks.insert(compressedBlocks.end(), outChunk.begin(), outChunk.end());
blockLen++;
}
std::vector<char> zip;
// Wstaw liczbê o iloœci bloków do vectora;
// Przekonpwertuj usigned int32 na ci¹g znkaów
// uint16_t blockLen = blockSizes .size();
addIntToVector<uint16_t>(zip, blockLen);
addIntToVector<uint32_t>(zip, maxBlockSize);
addIntToVector<uint32_t>(zip, lastChunkRawSize);
// Dodaj skompresowane dane
zip.insert(zip.end(), compressedBlocks.begin(), compressedBlocks.end());
return zip;
}
// Kompresja
std::vector<char> ChunkManager::compress_data(const std::vector<char>& input)
{
const int level = COMPRESSION_LEVEL;
// Obs³uga pustego chunku: zwracamy pusty wynik (0 bajtów).
if (input.empty()) return {};
ZSTD_CCtx* cctx = ZSTD_createCCtx();
if (!cctx) {
std::cerr << "ZSTD_createCCtx failed\n";
return {};
}
// Ustawienia „bez ramek”
size_t rc = 0;
rc |= ZSTD_CCtx_setParameter(cctx, ZSTD_c_format, ZSTD_f_zstd1_magicless);
rc |= ZSTD_CCtx_setParameter(cctx, ZSTD_c_checksumFlag, 0);
rc |= ZSTD_CCtx_setParameter(cctx, ZSTD_c_contentSizeFlag, 0);
rc |= ZSTD_CCtx_setParameter(cctx, ZSTD_c_dictIDFlag, 0);
rc |= ZSTD_CCtx_setParameter(cctx, ZSTD_c_compressionLevel, level);
if (ZSTD_isError(rc)) {
std::cerr << "ZSTD_CCtx_setParameter error\n";
ZSTD_freeCCtx(cctx);
return {};
}
const size_t srcSize = input.size();
// Szacowanie rozmiaru skompresowanego vectoru
const size_t maxDst = ZSTD_compressBound(srcSize);
std::vector<char> out(maxDst);
// Faktyczna kompresja
size_t written = ZSTD_compress2(cctx, out.data(), maxDst,
input.data(), srcSize);
ZSTD_freeCCtx(cctx);
if (ZSTD_isError(written)) {
std::cerr << "ZSTD_compress2 error: " << ZSTD_getErrorName(written) << "\n";
return {};
}
out.resize(written);
return out;
}
//////////////////////////////////////////////////////////////
//-----------------------------------------------------------------------------
// Dekompresja blokowa
//-----------------------------------------------------------------------------
std::vector<char> ChunkManager::dechunked(const std::vector<char>& zip, const bool& compress, const bool& encrypt)
{
size_t offset = 0;
const uint16_t chunkLen = getIntFromVector<uint16_t>(zip, offset);
const uint32_t chunkBeforeSize = getIntFromVector<uint32_t>(zip, offset);
const uint32_t chunkLastSize = getIntFromVector<uint32_t>(zip, offset);
std::vector<char> chunksString;
// Dekompresja bloków
for (size_t i = 0; i < chunkLen; ++i)
{
// Pobierz rozmiar chunków przed i po skompresowaniem
uint32_t chunkSize = i < chunkLen - 1 ? chunkBeforeSize : chunkLastSize;
uint32_t chunkZipSize = getIntFromVector<uint32_t>(zip, offset);
// Pobierz blok chunka
std::vector<char> inChunk(chunkZipSize);
std::memcpy(inChunk.data(), zip.data() + offset, chunkZipSize);
offset += chunkZipSize;
// Jeœli flaga encrypt jest aktywna najpierw zdeszyfruj blok
std::vector<char> zipChunk = encrypt ? eman.decrypt(inChunk) : std::move(inChunk);
// Zdeklarój pusty chunk
std::vector<char> chunk = decompress_data(zipChunk, chunkSize);
// Scal chunki
chunksString.insert(chunksString.end(), chunk.begin(), chunk.end());
}
return chunksString;
}
// Dekompresja
std::vector<char> ChunkManager::decompress_data(const std::vector<char>& input, const size_t& expected)
{
ZSTD_DCtx* dctx = ZSTD_createDCtx();
size_t r = 0;
r |= ZSTD_DCtx_setParameter(dctx, ZSTD_d_format, ZSTD_f_zstd1_magicless);
if (ZSTD_isError(r))
{
std::cerr << "ZSTD_DCtx_setParameter error" << std::endl;
ZSTD_freeDCtx(dctx);
}
std::vector<char> output(expected);
size_t dsize = ZSTD_decompressDCtx(dctx, output.data(), expected, input.data(), input.size());
ZSTD_freeDCtx(dctx);
if (ZSTD_isError(dsize)) {
std::cerr << "ZSTD_decompressDCtx error: " << ZSTD_getErrorName(dsize) << "\n";
return {};
}
return output;
}